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Introduction 

Vaccination remains one of the most 

effective means of preventative medicine in 

existence. A wide variety of viral diseases 

ranging from flu strains to HPV have been 

severely reduced in prevalence by vaccination 

practices. Traditionally, these agents are 

delivered via hypodermic needle or through 

an aerosolized nasal spray providing an 

efficient and rapid means of inoculation. 

However, new and evolving methods geared 

toward reducing total dosage, reducing 

hazardous sharp wastes, and improving 

effectiveness of the elicited immune response 

continue to emerge. Among these novel 

vaccination strategies is transdermal 

administration. Vaccines show improved performance when delivered via transdermal administration due 

to a large number of specialized “Langerhans” immune cells within the epidermal and dermal layers.  

Figure 1 outlines the dermal layers and these specialized cells.  Transdermal delivery also has the 

advantage of circumventing first pass metabolism by the gastrointestinal tract and the liver thereby 

maximizing cellular exposure to the antigen and immune response [1].  

A large body of recent work in transdermal drug delivery has focused on microneedles. These devices 

utilize an array of needles whose length and diameter are on the order of microns. Needles are able to 

penetrate the stratum corneum and 

expose epidermal tissue to the drug 

payload while minimizing pain due to lack 

of nerve endings. Furthermore, these 

devices are small, manageable, and 

sometimes degradable allowing for 

improved handling administration and 

medical waste. These traits have made 

microneedle injection a promising mode 

for vaccine delivery [2].  

 There are various methods for drug 

delivery when utilizing microneedles. 

Needles may be solid or hollow and are in 

some cases degradable over time. Figure 2 

illustrates four common strategies for 

microneedle drug delivery. Poke and 

Flow utilizes a hollow needle to inject a 

small payload of agent into the epidermis 

where it is then able to diffuse into the 

Figure 1: Diagram of skin. Points of interest include 

protective stratum corneum (15-20 um) that needs to be 

bypassed for drug delivery, and the dermal (2000 um) and 

epidermal (130-180 um) [1] layers that include immune 

cells. 

Figure 2: Drug is eluted through needles in poke-flow approach. In 

poke-release, the needles are degradable and contain the drug. In 

coat-poke, the drug is applied on the needles prior to penetration. 

The poke-patch method uses micro-needles to create pores in the 

skin; afterwards, a patch is placed on top of the penetration site. [3]  
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body. Poke and Patch relies on solid needles to create access holes over which a large drug-laden patch is 

placed allowing diffusion into the skin. Poke and Release and Poke and Coat both involve solid state agent 

which degrades and diffuses along the boundary of the microneedle. Each method has respective 

advantages and disadvantages with respect to vaccine delivery that are worthy of consideration [3].          

Problem Statement 

The aim of this project is to compare and contrast various current methods of transdermal vaccine delivery 

using microneedle patches. Here we will examine the “Poke and Flow” and “Poke and Patch” methods 

through a 2D homogeneous diffusion model using both analytical and numerical approaches. Solutions 

will map the transport of vaccine particles through the epidermis culminating in removal by systemic 

circulation. From these models efficacy data for each method will be compared and conclusions on their 

respective benefits will be discussed.   

Poke and Flow System 

Assumptions: 

While the poke and flow model is, by nature, a highly simplified case, there are several assumptions that 

must be made to ensure an analytical solution can be reached. These assumptions are: 

1) Vaccine delivery occurs along a single linear pattern of needles thereby reducing the problem to 

a function of x,y, and t. 

 

2) The initial dose is delivered at one time (t=0) at discrete points in space represented by 

𝛿(𝑥, 𝑧 + 𝑧0 ).  

 

3) The patch length is much smaller than the length of the limb resulting in an unbounded z domain. 

 

4) The Epidermis acts as a homogeneous structure with uniform cell composition, thickness and 

density. 

 

5)  The vaccine is transported away by the dermis very rapidly at X=L, there is no flux outside of the 

dermis at X=0. 

 

6) The stratum corium is impermeable and there is no flux across it (x=0).  

 

7) The immune response is significantly slower than circulatory removal of vaccine (no internal 

degradation).  

Given these assumptions coupled with the anatomy of the stratum corneum, the following boundary 

conditions can be generated: 

          𝐶(𝐿𝑥, 𝑧, 𝑡) = 0 

𝑑𝐶

𝑑𝑥
(0, 𝑧, 𝑡) = 0 
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Z axis is unbounded (infinite) 

 

As well as the following initial condition: 

          𝐶(𝑥, 𝑧, 0) = 𝐶0(𝛿 (𝑥, 𝑧 +
𝐿𝑧

2
) + 𝛿(𝑥, 𝑧 ) + 𝛿 (𝑥, 𝑧 −

𝐿𝑧

2
)) 

 

Model Parameters:   

The poke and flow model relies on 

several experimentally or clinically 

derived parameters. The first of these is 

the initial vaccine antigen concentration 

denoted as C0. Data derived from Fluvax, 

an inactivated flu vaccine, set the antigen 

dose at 10−10 𝜇𝑔/𝜇𝑚3 [4]. The second 

major coefficient is the depth, Lx, of the 

epidermis over which we wish to observe 

diffusion. As shown in Figure XX, the 

epidermis is a relatively thin layer and is 

estimated here to be 75um across all z 

(see assumption 4). While the limb itself 

is unbounded in Z, the specific points of 

the microneedles require a reference length 

Lz. Here we hope to model 3 individual 

microneedles and, by estimating needle 

density in a recent study of transdermal 

vaccination, a value of 500um was selected [1]. Finally, the diffusion constant of the epidermis must be 

estimated for small molecules. This was done experimentally by Römgens et al. who employed 

Fluorescence recovery after photo bleaching (FRAP) assay for molecules within the skin layers. By 

observing migration of fluorescent molecules into the bleached region, a value of roughly9  𝜇𝑚2/𝑠 [6]. 

Given these coefficients we may proceed to an analytical solution for the model.  

 

Analytical Solution: 

The diffusion profile of the poke and flow approach was solved analytically, using a Green’s function. The 

two-dimensional diffusion equation is shown, along with our initial condition of three separate 

microneedle injections modeled by Dirac Delta functions and our homogeneous boundary conditions 

(zero value at 𝑥 = 0, zero flux at 𝑥 = 𝐿𝑥, and unbounded in z). The x axis represents the depth into the 

skin, and the z axis represents the length of the limb, which is assumed to be an infinite domain because 

it is much longer than the thickness of the skin 

 

 

Figure 3:  H&E histology stain of skin with microneedle 

injection sites.  This figure demonstrates the orientation and 

layers relevant to our 2D model showing X and Z directions as 

well as the three needle locations [5].    
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Two-dimensional diffusion equation: 

𝜕𝐶

𝜕𝑡
= 𝐷 (

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑧2 ) 

 

Initial Condition: 

𝐶(𝑥, 𝑧, 0) = 𝐶0 (𝛿 (𝑥, 𝑧 +
𝐿𝑧

2
) + 𝛿(𝑥, 𝑧) + 𝛿 (𝑥, 𝑧 −

𝐿𝑧

2
)) 

 

Boundary Conditions: 
𝜕

𝜕𝑥
𝐶(0, 𝑧, 𝑡) = 0 

 

𝐶(𝐿𝑥 , 𝑧, 𝑡) = 0 

 

𝐶(𝑥, ±∞, 𝑡) = 0 

 

The Green’s function for the problem is given by the product of the Green’s function in x and the Green’s 

function in z (𝐺 = 𝑔𝑥𝑘 ∙ 𝑔𝑧𝑚). The full formulation is shown below. 

 

Two-dimensional Green’s Function: 

𝐺(𝑥, 𝑧, 𝑡;  𝑥0, 𝑧0, 𝑡0) = ∑ ∑ 𝑔𝑥𝑘(𝑥, 𝑡; 𝑥0, 𝑡0) ∙ 𝑔𝑧𝑚(𝑧, 𝑡;  𝑧0, 𝑡0)

𝑚𝑘

 

where 

𝑔𝑥𝑘(𝑥, 𝑡; 𝑥0, 𝑡0) = ∑
2

𝐿𝑥
cos (

𝑘𝜋𝑥0

2𝐿𝑥
) ∙ cos (

𝑘𝜋𝑥

2𝐿𝑥
)

∞

𝑘=𝑜𝑑𝑑

𝑒
−𝐷(

𝑘𝜋
2𝐿𝑥

)
2

(𝑡−𝑡0)
 

 

𝑔𝑧𝑚(𝑧, 𝑡;  𝑧0, 𝑡0) =
1

√4𝜋𝐷(𝑡 − 𝑡0)
𝑒

−
(𝑧−𝑧0)2

4𝐷(𝑡−𝑡0) 

 

Because this problem has homogeneous boundary conditions and does not contain a generation 

or consumption term, the solution can be found by integrating the product of the initial condition as a 

function of x0 and z0 and the Green’s Function over the x0 and z0 domains. 
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𝐶(𝑥, 𝑧, 𝑡) = ∫ ∫ 𝐶(𝑥0, 𝑧0, 0) ∙ 𝐺(𝑥, 𝑧, 𝑡;  𝑥0, 𝑧0, 0)𝑑𝑧0𝑑𝑥0

∞

−∞

𝐿

0

 

 

The initial condition is a sum of three separate Dirac Delta functions, so the integration above can 

be separated into the sum of three separate integration terms. The term with 𝛿(𝑥, 𝑧), or an impulse at 

(𝑥 = 0, 𝑧 = 0), is shown as an example. 

 

Integral setup for a single microneedle injection: 

𝐶(𝑥, 𝑧, 𝑡) = 𝐶0 ∑ ∫ cos (
𝑘𝜋

2𝐿𝑥
𝑥0) 𝑑𝑥0

𝐿𝑥

0

∞

𝑘=𝑜𝑑𝑑

∫ 𝑒−
(𝑧−𝑧0)2

4𝐷𝑡 𝑑𝑧0

∞

−∞

(
2

𝐿𝑥
) cos (

𝑘𝜋𝑥

2𝐿𝑥
) (

1

√4𝜋𝐷𝑡
) 𝑒

−𝐷(
𝑘𝜋
2𝐿𝑥

)
2

𝑡
 

 

Solution for a single microneedle injection: 

𝐶(𝑥, 𝑧, 𝑡) = ∑
4𝐶0

𝑘𝜋
cos (

𝑘𝜋𝑥

2𝐿𝑥
) 𝑒

−𝐷(
𝑘𝜋
2𝐿𝑥

)
2

𝑡
𝑒−

𝑧2

4𝐷𝑡

∞

𝑘=𝑜𝑑𝑑

 

 

Putting the responses from all three impulses together results in the last decaying exponential 

being replaced by a sum of three decaying exponentials in the final solution, as shown in the equation 

below. 

 

Final analytical solution: 

𝐶(𝑥, 𝑧, 𝑡) = ∑
4𝐶0

𝑘𝜋
cos (

𝑘𝜋𝑥

2𝐿𝑥
) 𝑒

−𝐷(
𝑘𝜋
2𝐿𝑥

)
2

𝑡
(𝑒−

(𝑧+𝐿𝑧/2)2

4𝐷𝑡 + 𝑒−
𝑧2

4𝐷𝑡 + 𝑒−
(𝑧−𝐿𝑧/2)2

4𝐷𝑡 )

∞

𝑘=𝑜𝑑𝑑

 

 

 The model parameters were plugged in, and the concentration as a function of space was 

computed using the first ten terms of the series expansion and plotted on surface plots in the x-z plane at 

various times t as shown in Figure 4. As time progresses, the concentration can be seen spreading from 

the three injection sites as the spikes flatten. Figure Y shows that after 1,000 seconds, the concentration 

has reached a uniform spread so that the three separate injection sites are no longer distinguishable. Note 

that the concentration axis has been adjusted to display this behavior. 
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Figure 4: Concentration in the x-z plane at various times from 1 to 500 seconds. 

 

Figure 5: Concentration in the x-z plane 1,000 seconds post-injection. Note that the concentration axis has 

been adjusted to show the uniform concentration profile in the z direction, but the maximum concentration 

is 2 orders of magnitude lower than the maximum concentration depicted by the spikes at t = 1 second. 
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Numerical Solution: 

The numerical approximation to our problem was found by using finite differences. Finite 

differences uses discrete substitutions for derivatives to find approximate values of the derivatives at each 

point on a grid. First, the 2D space was discretized in the x and z directions into a grid with sizes ∆𝑥 and∆𝑧, 

respectively. Time was discretized into units ∆𝑡 large. Next, the discretized approximations of the 

derivatives could be used. They use points surrounding the point of interest in the spatial dimensions to 

solve for the next point in time. The approximations are shown below. 

 

𝜕𝐶

𝜕𝑡
 →

𝐶(𝑥, 𝑧, 𝑡 + ∆𝑡) − 𝐶(𝑥, 𝑧, 𝑡)

∆𝑡
 

𝜕2𝐶

𝜕𝑥2
 →

𝐶(𝑥 − ∆𝑥, 𝑧, 𝑡) − 2𝐶(𝑥, 𝑧, 𝑡) + 𝐶(𝑥 + ∆𝑥, 𝑧, 𝑡)

∆𝑥2
 

𝜕2𝐶

𝜕𝑧2
 →

𝐶(𝑥, 𝑧 − ∆𝑧, 𝑡) − 2𝐶(𝑥, 𝑧, 𝑡) + 𝐶(𝑥, 𝑧 + ∆𝑧, 𝑡)

∆𝑧2
 

 

These can be substituted into the 2D diffusion equation to yield the following. 

 

𝐶(𝑥, 𝑧, 𝑡 + ∆𝑡) − 𝐶(𝑥, 𝑧, 𝑡)

∆𝑡
= 𝐷 (

𝐶(𝑥 − ∆𝑥, 𝑧, 𝑡) − 2𝐶(𝑥, 𝑧, 𝑡) + 𝐶(𝑥 + ∆𝑥, 𝑧, 𝑡)

∆𝑥2
+ 

𝐶(𝑥, 𝑧 − ∆𝑧, 𝑡) − 2𝐶(𝑥, 𝑧, 𝑡) + 𝐶(𝑥, 𝑧 + ∆𝑧, 𝑡)

∆𝑧2
) 

 

Solving for the point we are interested in calculating, the equation becomes: 

 

𝐶(𝑥, 𝑧, 𝑡 + ∆𝑡) = 𝐷 (
𝐶(𝑥 − ∆𝑥, 𝑧, 𝑡) − 2𝐶(𝑥, 𝑧, 𝑡) + 𝐶(𝑥 + ∆𝑥, 𝑧, 𝑡)

∆𝑥2
+

𝐶(𝑥, 𝑧 − ∆𝑧, 𝑡) − 2𝐶(𝑥, 𝑧, 𝑡) + 𝐶(𝑥, 𝑧 + ∆𝑧, 𝑡)

∆𝑧2
) ∆𝑡 + 𝐶(𝑥, 𝑧, 𝑡) 

We developed a script in MATLAB that would use the finite differences approximation above to 

solve for the concentration values in 2D over time, given initial concentration values for every point in the 

discretized grid. To simulate the poke and flow method, every point in the grid was set to zero except the 

points representing the microneedles, which were set to the concentration C0. These values were then 

allowed to change according to the values around them. The poke and patch method was simulated with 

the same initial conditions, but at every time point, the points representing the microneedles were set to 

C0. This represents the constant concentration of the vaccine at each of these points in the poke and 

patch method. 

The numerical approximation showed nearly the same concentration profile and dynamics as the 

analytical solution. However, the scaling does not agree well. We believe that this has something to do 

with the delta function in the analytical solution, because there is no equivalent for this in the discrete 

domain. Surface plots of the concentration are shown below. 
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Figure 6: Numerical solution for the Patch and Flow method. The concentration starts out relatively high 

and very localized, as is expected from the initial conditions. The peaks spread out and flatten while 

rounding off at the top. Eventually, a relatively even concentration in the z-direction develops near the 

microneedles. 
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Poke and Patch System 

Model Parameters: 

The “Poke and Patch” model operates on, unless otherwise stated, the 

same assumptions, coefficients, boundary conditions, and initial 

conditions. The notable exception which differentiates this model is the 

constant reservoir of drug available rather than the instantaneous dose. 

As shown in Figure 7, this is due to the generation of open punctures in 

the skin which are covered by a large patch reservoir. This is reflected in 

the boundary conditions which now reflect this as follows: 

𝐶(𝑥 = 0, 𝑧= {−
𝐿

2𝑧
, 0,

𝐿

2𝑧
} , 𝑡)=C0 

𝐶(𝐿𝑥, 𝑧, 𝑡) = 0 

𝑑𝐶

𝑑𝑥
(0, 𝑧≠ {−

𝐿

2𝑧
, 0,

𝐿

2𝑧
} , 𝑡) = 0 

𝑑𝐶

𝑑𝑧
(𝑥, −𝐿𝑧 , 𝑡) =

𝑑𝐶

𝑑𝑧
(𝑥, 𝐿𝑧 , 𝑡) = 0 

In order to evaluate a solution, the initial condition at time=0 is changed 

to state that the concentration at all points in the model is 0 shown below 

as:  

 

𝐶(𝑥, 𝑧, 0) = 0 

 

Numerical Solution: 

The poke and patch model starts out identical to the poke and flow 

method, but the models quickly become different. Instead of widening 

and flattening the peaks, the peaks stay pinned at the C0 value while the 

“valleys” in between the peaks become shallower and shallower. The 

concentration values end up much higher overall, as is expected for a 

continuous release of vaccine instead of the instantaneous release of 

vaccine. Surface plots of the poke and patch model are shown below. 

 

 

 

 

Figure 7:  Poke and Patch 

method graphical overview.  

Holes are generated by a 

solid needle and then covered 

by a large patch containing a 

relatively large concentration 

of drug or antigen [7].       
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Discussion and Conclusion 

The data modeled here suggests that the Poke and Patch method may produce superior results. 

At 1,000 seconds post-injection, the minimum concentration of any point in the space enclosed by the 

three needles is more than an order of magnitude higher in the Poke and Patch model than in the Poke 

and Flow model. This means that a much greater overall dose can be achieved using the Poke and Patch 

method. Additionally, Poke and Patch utilizes solid needles which are less prone to failure and are more 

structurally sound. The inclusion of a patch also makes dose alterations much more manageable as 

antigen flux can be stopped at any time [2].  

Despite the observed advantages for Poke and Patch, there are several inherent limitations within 

our model that may interfere with results. As stated above, there is a scaling discrepancy with the 

numerical solution for the Poke and Flow model. While the root cause is unknown, it likely arise from the 

use of 𝛿(𝑥, 𝑧) functions to describe dose points. Despite interest in the Poke and Release and Poke and 

Figure 8:  Numerical solution for the Poke and Patch method.  Values begin at a high concentration at the 

site of needle injection.  Over time, valleys between peaks form and steadily increase suggesting 

increased coverage.       
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Coat methods, our model is currently unable to resolve the complex boundary of a degrading needle. 

Thus, for our methods, the injection site is compressed to a single point. For our Poke and Patch solution, 

the issue of depletion is never fully addressed. In practice, the concentration of drug within the patch 

would decrease as a function of time though our model assumes the reservoir is so large this is negligible. 

Finally, it should be noted that the method of action by which vaccines operate is through the immune 

response. The breakdown of vaccine and corresponding generation of antibodies and antigen presenting 

cells is not modeled as an inhomogeneous sink term in this model.  

 Future attempts at microneedle delivery modeling will focus first on the immune response. 

Obtaining a reliable value for in-vivo breakdown of antigen will likely require experimentation though, 

with this data, the model can be vastly improved in accuracy. Following this improvements to boundary 

value modeling aimed at incorporating the needle geometry will allow for studies of more advanced 

methods of transdermal delivery such as Poke and Coat. Finally, expansion to a full 3D geometry of 

needles would allow for modeling of complex patterns that may optimize dose coverage across the 

epidermis. These areas of improvement serve as excellent ways to advance the model as well as our 

understanding of transdermal delivery.  
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Appendix  

MATLAB: Poke and Flow 

function project_analytical 

 

D = 9;          % [um^2/s] 

Lx = 75;        % [um] 

C0 = 1e-10;     % [ug/um^3] 

 

xmesh = 0:Lx/100:Lx;    % x domain 

zmesh = -500:1:500;     % z domain 

tmesh = [1, 50, 100, 500, 1000];   % times t to plot solution 

nx = length(xmesh); 

nz = length(zmesh); 

nt = length(tmesh); 

 

u = zeros(nx,nz,nt);    % initialize solution matrix 

 

for x = 1:nx 

    xval = xmesh(x); 

    for z = 1:nz 

        zval = zmesh(z); 

        for t = 1:nt 

            tval = tmesh(t); 

            for k = 1:2:21 % first 10 terms of series expansion 

                u(x,z,t) = u(x,z,t) + 4*C0/(k*pi)*cos(k*pi*xval/(2*Lx))*... 

                    exp(-D*(k*pi/(2*Lx))^2*tval)*(exp(-zval^2/(4*D*tval))+... 

                    exp(-(zval+250)^2/(4*D*tval))+... 

                    exp(-(zval-250)^2/(4*D*tval))); 

            end 

        end 

    end 

end 

 

u_t0 = u(:,:,1)';   % solution at different "snapshots" in time 

u_t1 = u(:,:,2)'; 

u_t2 = u(:,:,3)'; 

u_t3 = u(:,:,4)'; 

u_t4 = u(:,:,5)'; 

 

% plot solutions 

 

figure 

surf(xmesh,zmesh,u_t0,'edgecolor','none') 

zlim([0, 2.5*C0]) 

pbaspect([75,1000,500]) 

xlabel('x (\mum)','fontsize',16) 

ylabel('z (\mum)','fontsize',16) 

zlabel('Concentration (\mug/\mum^3)','fontsize',16) 

title('Analytical Solution (t = 1 s)','fontsize',20) 
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figure 

surf(xmesh,zmesh,u_t1,'edgecolor','none') 

zlim([0, 2.5*C0]) 

pbaspect([75,1000,500]) 

xlabel('x (\mum)','fontsize',16) 

ylabel('z (\mum)','fontsize',16) 

zlabel('Concentration (\mug/\mum^3','fontsize',16) 

title('Analytical Solution (t = 50 s)','fontsize',20) 

 

figure 

surf(xmesh,zmesh,u_t2,'edgecolor','none') 

zlim([0, 2.5*C0]) 

pbaspect([75,1000,500]) 

xlabel('x (\mum)','fontsize',16) 

ylabel('z (\mum)','fontsize',16) 

zlabel('Concentration (\mug/\mum^3)','fontsize',16) 

title('Analytical Solution (t = 100 s)','fontsize',20) 

 

figure 

surf(xmesh,zmesh,u_t3,'edgecolor','none') 

zlim([0, 2.5*C0]) 

pbaspect([75,1000,500]) 

xlabel('x (\mum)','fontsize',16) 

ylabel('z (\mum)','fontsize',16) 

zlabel('Concentration (\mug/\mum^3)','fontsize',16) 

title('Analytical Solution (t = 500 s)','fontsize',20) 

 

figure 

surf(xmesh,zmesh,u_t4,'edgecolor','none') 

pbaspect([75,1000,500]) 

xlabel('x (\mum)','fontsize',16) 

ylabel('z (\mum)','fontsize',16) 

zlabel('Concentration (\mug/\mum^3)','fontsize',16) 

title('Analytical Solution (t = 1000 s)','fontsize',20) 

 

end 
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MATLAB: Poke and Flow 

%%Program for making animation from array C 

 

%Plot first frame 

s = surf(z,x,C(:,:,1),'edgecolor','none'); 

 

%Set aspect ratio and axis for better viewing 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

%Label figure 

http://www.mathworks.com/products/matlab
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title('Numerical Solution (Finite Differences)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

 

%open video file 

vidObj = VideoWriter('AnimationImp.avi'); 

open(vidObj); 

 

% Step size (30 in this case) determines frame rate 

for i = 1:30:length(C(1,1,:)); 

    %updates data in the plot 

    s.ZData = C(:,:,i); 

    %captures frame 

    F = getframe(gcf); 

    %writes to video 

    writeVideo(vidObj,F); 

 

end 

%close video file 

close(vidObj); 

 

%Plots single figure at t = 1,50,100,200,500 

figure 

s = surf(z,x,C(:,:,10),'edgecolor','none'); 

title('Numerical Solution (t = 1 s)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

figure 

s = surf(z,x,C(:,:,500),'edgecolor','none'); 

title('Numerical Solution (t = 50 s)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

figure 

s = surf(z,x,C(:,:,1000),'edgecolor','none'); 

title('Numerical Solution (t = 100 s)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

figure 

s = surf(z,x,C(:,:,2000),'edgecolor','none'); 

title('Numerical Solution (t = 200 s)') 

xlabel('z (\mum)') 
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ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

figure 

s = surf(z,x,C(:,:,5000),'edgecolor','none'); 

title('Numerical Solution (t = 500 s)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 
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MATLAB: Poke and Patch 

%%Program for making animation from array C 

 

%Plot first frame 

s = surf(z,x,C(:,:,1),'edgecolor','none'); 

 

%Set aspect ratio and axis for better viewing 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

%Label figure 

title('Numerical Solution (Finite Differences)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

 

%open video file 

vidObj = VideoWriter('AnimationImp.avi'); 

open(vidObj); 

 

% Step size (30 in this case) determines frame rate 

for i = 1:30:length(C(1,1,:)); 

    %updates data in the plot 

    s.ZData = C(:,:,i); 

    %captures frame 

    F = getframe(gcf); 

    %writes to video 

    writeVideo(vidObj,F); 

 

end 

%close video file 

close(vidObj); 
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%Plots single figure at t = 1,50,100,200,500 

figure 

s = surf(z,x,C(:,:,10),'edgecolor','none'); 

title('Numerical Solution (t = 1 s)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

figure 

s = surf(z,x,C(:,:,500),'edgecolor','none'); 

title('Numerical Solution (t = 50 s)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

figure 

s = surf(z,x,C(:,:,1000),'edgecolor','none'); 

title('Numerical Solution (t = 100 s)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

figure 

s = surf(z,x,C(:,:,2000),'edgecolor','none'); 

title('Numerical Solution (t = 200 s)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 

 

figure 

s = surf(z,x,C(:,:,5000),'edgecolor','none'); 

title('Numerical Solution (t = 500 s)') 

xlabel('z (\mum)') 

ylabel('x (\mum)') 

zlabel('Concentration (\mug/\mum^3)*10^-^1^0') 

pbaspect([750 75 750]) 

axis([0 1000 0 75 0 .02]) 
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